Appendix V

Matrix for Section 319 National Monitoring Program Projects

PROJECT	BASIN SIZE	IMPAIRMENT(S)	POLLUTANT(S)
Alabama: Lightwood Knot Creek	68 mi²	(Lake Jackson and tributaries) ◆Recreation ◆Aquatic life support	◆Sediment ◆Nutrients (N & P) ◆Bacteria
Arizona: Oak Creek Canyon	9 mi²	 Primary contact recreation Aquatic life support Drinking water supply 	◆Bacteria ◆Nutrients (N)
California: Morro Bay Watershed	76 mi ²	 Estuarine and fresh water habitat Shellfish harvesting Recreation 	 Sediment Nutrients Bacteria Metals
Connecticut: Jordan Cove Watershed	<1 mi²	 Jordan Cove: shellfish harvesting Long Island Sound: habitat, recreation 	 Sediment Fecal coliform Nutrients (N) Metals
Idaho: Eastern Snake River Plain	47 mi ² (ground water monitoring) 20 acres (test fields)	 Drinking water supply (ground water) 	◆Nitrate
Illinois: Lake Pittsfield	11 mi ²	Drinking water supplyRecreation	◆Sediment ◆Nutrients
Illinois: Waukegan River	12 mi ²	 Aquatic life support 	 Peak stormwater flows Sediment Loss of physical habitat
Iowa: Sny Magill Watershed	36 mi²	 ◆Recreation ◆Aquatic life support 	 Sediment Nutrients Animal waste Pesticides
Iowa: Walnut Creek	38 mi²	 Aquatic life support (Mississippi River and Gulf of Mexico) 	 Sediment Nutrients (nitrate Herbicides
Maryland: Warner Creek Watershed	1mi ²	 Aquatic life support (Monocacy River and Chesapeake Bay) 	◆Sediment ◆Nitrogen ◆Phosphorus

POLLUTANT SOURCE(S)	WATER QUALITY OBJECTIVES	WATER QUALITY MONITORING DESIGN
Agricultural fieldsPoultry operations	 ◆Control erosion ◆Reduce nutrient loading to streams 	Paired watershed 2 paired sites - 2 control / 2 treatment
 Recreational users Aquatic sediments Septic systems Natural/background Unknown 	 Reduce fecal coliform by 50% Reduce nutrient levels (NH₃) 20% 	Upstream / downstream
 Cropland and rangeland Urban areas and roads Unstable streambanks Abandoned mines 	 Evaluate effectiveness of several BMP systems 30% to 66% reduction in sediment yield 	 Paired watershed 1 control / 1 treatment 3 upstream/downstream 1 single downstream site
 ◆Urban runoff ◆Construction 	 Demonstrate water quantity/quality benefits of urban/residential BMPs Maintain post-development peak runoff rate and volume at pre- development rates Reduce N 65%, P 40%, FC 85% 	 Paired watershed: 1 control 2 treatment Two treatment periods: construction and post- construction
Irrigated cropland: •Excessive irrigation •Excessive N inputs	 Evaluate nitrate-reducing BMPs at the field scale Evaluate effects of irrigation water management on nitrate leaching to shallow ground water Evaluate effects of crop rotation on nitrate leaching to shallow ground water 	 Paired fields 2 control / 2 treatment
 Cropland Streambanks/channels Small livestock operations 	 Reduce sediment loads to lake Evaluate effectiveness of sediment retention basins 	Before/After: •4 subwatershed stations •3 in-lake stations
 ◆Urban impervious surfaces ◆Streambank erosion 	 Restore streambanks Reduce or mitigate effects of stormwater on aquatic habitat Restore stream fishery 	◆Upstream / downstream
 Cropland Livestock facilities Streambank erosion 	 Reduce sediment loads by 50% Reduce N, P, pesticide loads by 25% Decrease streambank erosion rates Implement 30 animal manure management systems 	 Paired watershed: 1 control / 1 treatment Upstream/downstream in subbasins
 ◆Cropland ◆Streambank erosion 	 Demonstrate/evaluate prairie restoration as BMP for water quality Reduce nitrate, phosphorus, herbicide and sediment loads 	 Paired watershed/trend analysis 1 control/ 1 treatment Upstream / downstream subbasin stations
 Dairy operations Animal waste Cropland Pasture 	 Collect WQ data to develop and calibrate a SWAT model application to predict effects of BMPs on water quality in MD Illustrate relationships between BMPs and WQ 	 Paired watershed 1 control / 1 treatment Upstream/downstream

PROJECT	SAMPLING SCHEME	PRIMARY WATER QUALITY VARIABLES
Alabama: Lightwood Knot Creek	 Discharge monitored continuously Weekly composites April - September Weekly grab samples for bacteria Biological monitoring 2 times/year 	 Physical: turbidity, TSS, bedload, TDS, conductance Chemical: TP, OP, NH₃, NO₃ Biological: fecal bacteria, macroinvertebrates, habitat
Arizona: Oak Creek Canyon	 Weekly grab samples during recreation season (May - Sept.) Monthly grab samples Nov-April 	FC, NO ₃ , NH ₃ , TN, OP
California: Morro Bay Watershed	 Event/baseflow automated Even interval grab sampling Annual biomonitoring Stream channel transects, vegetation monitoring 	SS, turbidity, NO ₃ , PO ₄ , fecal coliform Macroinvertebrates, habitat Riparian and rangeland vegetation
Connecticut: Jordan Cove Urban Watershed	 Storm event (automated, flow- proportional composites) Grab samples (bacteria, BOD) Monthly composites (metals) 	Flow, TSS, TP, TKN, NH ₃ , NO ₂ + NO ₃ , FC BOD, Cu, Pb, Zn
Idaho: Eastern Snake River Plain	 Monthly ground water grab samples Growing season soil water samples Geospatial/geostatistical analysis used to address hydrogeologic variability of fields 	NO ₃ -N, NO ₄ -N, TKN, TDS, DO, organic pesticides
Illinois: Lake Pittsfield	 Storm event sampling (automated) at subwatershed outlets Monthly grab sampling (April - October) in Lake 	Subwatersheds: TSS Lake: TSS, VSS, SS, TO, OP, DP, NH ₃ -N, NO ₂ +NO ₃ -N, TKN
Illinois: Waukegan River	 Seasonal biomonitoring Continuous flow Flow, temperature, DO 	 ◆Fish (IBI) ◆Macroinvertebrates (MBI) ◆Habitat (PBI)
Iowa: Sny Magill Watershed	 Continuous stage, daily Q and SS Weekly grab samples Annual habitat fisheries assessment Bi-monthly macroinvertebrates 	Q, turbidity, SS, TP, N series, DO, fecal coliform, herbicides
Iowa: Walnut Creek	 Flow, SS monitored daily at watershed outlets Storm event and Biweekly/monthly sampling Annual habitat and fishery survey 	Flow, turbidity, SS, P, NO ₃ , NH ₃ , BOD, herbicides, Macroinvertebrates, fish
Maryland: Warner Creek Watershed	 Paired watersheds: grabs weekly (Feb-June) and bi-weekly Upstream/downstream: automated storm samplings; grabs weekly (Feb-June) and bi-weekly 	TKN, NH ₃ , NO ₃ + NO ₂ , NO ₃ , TP, OP, sediment

BMPs	MAJOR COOPERATING INSTITUTIONS	PROJECT TIME FRAME
Critical area planning Cover and green manure crops	 Geological Survey of Alabama Alabama Dept. of Environmental Management USDA NRCS Covington County Extension 	1996-2002 Final Report 2002
 Public education/signage 	 Arizona Dept. of Environmental Quality Northern Arizona University Arizona State Parks 	1994-1998 Final Report 1998
Riparian pasture development	 Central Coast Regional Water Quality Control Board California Polytechnic State University USDA NRCS 	1993-2002 Final Report 2003
 Vegetation management Sediment retention basins/ grassed swales Rain gardens 	 University of Connecticut Aqua Solutions, L.L.C. Connecticut DEP Connecticut Cooperative Extension USDA-NRCS 	1996-2006 annual reports published
Crop rotation Fertilizer management	 ID Division of Environmental Quality U. of Idaho Cooperative Extension Boise State University USDA NRCS 	1991 - 1998 annual reports published under Demo Project
Stream channel stabilization	 IL State Water Survey IL Environmental Protection Agency Pike Co. Soil and Water Conservation District 	1992-1994 annual reports
	 IL Environmental Protection Agency IL State Water Survey IL Department of Natural Resources 	1992 -2004 annual reports
Integrated crop management	 IA DNR-Geologic Survey IA State University Extension USDA NRCS (larger Hydrologic Unit Area and WQ Special Projects 	1991-2001 Final Report 2004
 Restoration of wetlands and riparian zones Required nutrient management and pest management on remaining cropland 	 IA DNR-Geological Survey US Fish and Wildlife Service 1996 	1995 - 2005 Final Report 2006
Watering systems	 MD Department of Natural Resources U. of Maryland Agricultural Engineering USDA-NRCS, CES (Monocacy Demo Project) 	1993 - 2003 annual reports

PROJECT	<u>BASIN</u> <u>SIZE</u>	IMPAIRMENT(S)	POLLUTANTS
Michigan: Sycamore Creek Watershed	106 mi ²	 Aquatic life support Recreation Urban areas 	◆Sediment ◆Nutrients ◆BOD
Minnesota: White Water River Watershed	320 mi ²	 Aquatic life support Recreation 	 Turbidity/sediment Fecal coliform Temperature
Nebraska: Elm Creek Watershed	56 mi²	 Aquatic life support (coldwater trout fishery) 	 Sediment Increased water temperature Increased peak flows
New York: New York City Watershed	1 mi²	 Drinking water Aquatic life support 	 ◆Phosphorus ◆Sediment ◆Bacteria/pathogens
North Carolina: Long Creek Watershed	44 mi²	 Aquatic life support Drinking water 	◆Sediment ◆Bacteria ◆Nutrients
Oklahoma: Peacheater Creek	25 mi²	 Recreation Aquatic life support 	 Nutrients Loss of habitat Reduced water clarity Periphyton growth Eutrophication (downstream lake)
Oregon: Upper Grande Ronde Basin	695 mi ²	 Aquatic life support (cold water fish, macroinvertebrates Water supply Recreation 	 Water temperature Loss of physical habitat Loss of riparian vegetation
Pennsylvania: Pequea and Mill Creek Watersheds	3 mi²	 Aquatic life support Wildlife habitat Agricultural water supply 	 Bacteria Sediment Nutrients Organic matter

POLLUTANT SOURCE(S)	WATER QUALITY OBJECTIVES	WATER QUALITY MONITORING DESIGN
CroplandLivestock accessStreambanks	 Reduce impacts of agricultural nps pollutants on surface and ground water quality Reduce sediment in Sycamore Creek by 52% 	 Paired watershed 1 control/2 treatments
 Streambank erosion Degraded riparian areas Cropland/pasture Feedlot runoff Livestock access to stream 	 Evaluate effectiveness of BMP implementation implementation on water quality 	 Paired watershed 1 control/multiple treatments
 Cropland Rangeland Streambank erosion Irrigation return flows 	 Reduce sediment load in Elm Creek by 50% Reduce summer max. water temperature Reduce instream sedimentation Reduce peak flows Improve aquatic habitat 	 Upstream/downstream Single downstream station
Dairy operations: •Animal waste •Cropland •Pasture	 Test ability of Whole Farm Planning process to correctly identify on-farm pollution sources Quantify reductions in pollutant loading due to implementation of BMPs under Whole Farm Planning 	 Paired watershed 1 control / 1 treatment
 Cropland Dairy operations Pastures Streambank erosion Urbanization 	Quantify the effects of BMPs on: •Pollutant loads from dairy farm •Cropland sediment/nutrient losses •Aquatic biota •Reduce sediment yield from water supply watershed by 60%	 Paired watershed 1 control / 1 treatment Upstream/downstream Single downstream station
 Poultry houses Land application of litter Dairies & other livestock Streambank erosion Poor riparian management 	 Restore recreation and aquatic life support Minimize eutrophication impacts on downstream lake t 	 Paired watershed 1 control / 1 treatment
 Grazing practices Channel modification Mining Road construction Logging 	 Improve salmonid and aquatic macroinvertebrate communities Quantitatively document a cause & effect relationship between improved habitat, lower water temperatures, & improved salmonid & macroinvertebrate communities 	 Paired watershed 1 control / 1 treatment Upstream/downstream 3 Single stations
 Livestock access to streams Degraded riparian zones 	Evaluate effects of streambank fencing on surface and near-stream ground water quality	 Paired watershed 1 control / 1 treatment Upstream/downstream

PROJECT	SAMPLING SCHEME	PRIMARY WATER QUALITY VARIABLES
Michigan: Sycamore Creek Watershed	 Automated storm events (Mar July) Weekly grab samples (Mar July) Automated flow-proportional sampling year-round at watershed outlet 	◆Turbidity, TSS, TP, OP, TKN, NH ₃ , NO ₂ +NO ₃ , COD
Minnesota Whitewater River Watershed	 Automated event and weekly chemistry Annual biomonitoring 	Temperature, TSS, TP, NO ₃ , fecal coliform, macroinvertebrates, fish, and habitat
Nebraska: Elm Creek Watershed	 Grab sampling: weekly (April - Sept.), monthly (Oct March) Seasonal biomonitoring, habitat assessment 	Temperature, DO, TSS, macroinvertebrates, fish, stream morphology, substrate, habitat
New York: New York City Watershed	 Automated storm event sampling Weekly grabs during base flow Twice/monthl pathogens Annual biomonitoring 	TSS, TP, SRP, TDP, PP, TKN, NH ₃ -N, NO ₂ +NO ₃ -N, TOC, pH, <i>Cryptosporidium, Giardia,</i> macroinvertebrates
North Carolina: Long Creek Watershed	 Grab sampling: weekly (Dec May), monthly (June - Nov.) Automated storm event sampling Annual biological survey 	TS, TSS, TP, TKN, NO ₂ +NO ₃ -N, DO FC, FS, macroinvertebrates, aufwuchs
Oklahoma: Peacheater Creek	 Grab sampling: weekly (July - Jan.), monthly (Feb June) Automated storm event sampling Biomonitoring: 2x/yr (periphyton and macroinvertebrates), annual to biennial (fish and habitat) 	Turbidity, TSS, TP, OP, TKN, NO ₂ +NO ₃ -N, Periphyton, macroinvertebrates, fish habitat, bank erosion
Oregon: Upper Grande Ronde Basin	 April - October monitoring season: Continuous water temperature Water chemistry, habitat, biomonitoring 3x/year 	Water temperature, DO, turbidity, BOD NH ₃ , macroinvertebrates, fish, habitat
Pennsylvania: Pequea and Mill Creek Watersheds	 Continuous flow measurement Paired watersheds: grab samples every 10 d (Apr Nov.), monthly (Dec Mar.) Upstream/downstream: automated storm even sampling Biomonitoring 2x/yr 	SS, NH _{3,} NO ₂ +NO ₃ , organic N, TP, OP, habitat, macroinvertebrates

<u>BMPs</u>	MAJOR COOPERATING INSTITUTIONS	PROJECT TIME FRAME
Cropland protective coverDiversions	 Ingham Co. Soil Conservation District MI Dept. of Natural Resources MSU Extension - Ingham Co. USDA-NRCS 	1993 - 1997 annual reports
 Grazing management Livestock exclusion 	 MN Pollution Control Agency Whitewater River Watershed Project University of Minnesota Winona State University 	1994 - 2006
 Streambank stabilization 	 NE Department of Environmental Quality USDA NRCS (HUA Project) Webster County Cooperative Extension 	1992 - 1996 annual HUA reports
 Barnyard runoff management Milkhouse waste diversion Livestock exclusion 	 NY State Dept. Env. Cons. NY City Dept. Env. Protection NYS Watershed Agricultural Council Delaware County Soil and Water Cons. District USDA-NRCS 	1993 - 2006
 Nutrient management 	 Gaston Co. Cooperative Extension NCSU Water Quality Group NC DNR Div. of Water Quality NC Cooperative Extension 	1993-2001 Final Report 2002
 Planned grazing/pasture management Animal waste management, structures Watering facilities 	 OK Conservation Commission Co. Conservation Districts Co. Extension Service OK State University USDA NRCS 	1995-2005 Implementation Report 2005
 Streambank stabilization Riparian revegetation 	 OR Dept. Environmental Quality Local SWCDs Confederated Tribes of Umatilla Indian Reservation (CTUIR) US Forest Service USDA NRCS 	1993-2006 annual and periodic reports
adjacent to stream	 PA DEP Bureau of Land and Water Conservation USGS USDA NRCS Lancaster Conservation District PSU Cooperative Extension 	1993 - 2001 Final Report 2005

PROJECT	<u>BASIN</u> <u>SIZE</u>	IMPAIRMENT(S)	POLLUTANT(S)
Pennsylvania: Stroud Preserve Watershed	0.3 mi ²	Regional WQ impairments: •Recreation •Aquatic life support	 Nutrients Sediment
Pennsylvania: Swatara Creek Watershed	43 mi ²	 Aquatic life support Recreation Metals 	AciditySulfates
Pennsylvania: Villanova University Stormwater BMPs	<0.5 mi ²	Regional stormwater issues, e.g., •Aquatic life support •Recreation •Water Supply	 Flow Sediment Nutrients Bacteria Metals
South Dakota: Bad River	3,209 mi ²	 Aquatic life support Recreation Irrigation 	 Sediment Loss of channel capacity Loss of water clarity
Vermont: Lake Champlain Basin Agricultural Watersheds	12 mi ²	 Aquatic life support Recreation Downstream impacts to Lake Champlain (Eutrophication) 	 Nutrients (P) Bacteria Organic matter
Washington: Totten and Eld Inlet	105 mi²	 ◆Shellfish harvesting 	◆Bacteria
Wisconsin: Otter Creek	26 mi ²	 Aquatic life support Recreation Downstream impacts to Sheboygan River and lake Michigan 	 Nutrients (P) Bacteria Sediment Loss of habitat

POLLUTANT SOURCE(S)	WATER QUALITY OBJECTIVES	WATER QUALITY MONITORING DESIGN
 Cropland Fertilizers Atmospheric deposition 	 Evaluate nps pollutant reduction by riparian forest buffer Assess time required to achieve significant pollution reductions Establish specific guidelines for development and management of rfb in mid-Atlantic region 	 Paired watershed 1 control/1 treatment
Coal mine drainage	 Evaluate performance of innovative passive treatment systems for neutralizing coalmine drainage and iron removal Evaluate long-term effects on stream water quality 	 Upstream/downstream Single station before/ after
Urban stormwater, i.e. impervious surfaces	 Test and evaluate performance of individual stormwater BMPs to reduce peak flows and treat water quality 	◆Input/output from BMPs
 Cropland Rangeland Grazing practices Hydropower generation 	Document water quality improvements achieved through implementation of riparian and rangeland management BMPs	 Paired watershed 1 control / 1 treatment Before/after
 Livestock access to streams Degraded streambanks and riparian zones Dairy operations Cropland 	Assess effectiveness of livestock exclusion/ riparian restoration: •Document changes in nutrients, bacteria, and sediment concentrations and loads •Evaluate response of stream biota	 Paired watershed 1 control / 2 treatment
 Livestock operations in stream corridors Failing on-site wastewater treatment systems 	 Reopen restricted shellfish areas and protect threatened shellfish areas Reduce median FC levels in tributary streams by 44-69% 	 Paired watershed 1 control / 1 treatment Watershed outlet trend stations
 Dairy operations Cropland Streambank erosion 	 Increase numbers of pollution-intolerant fish species Improve recreational uses Reduce pollutant loading to the Sheboygan River and Lake Michigan 	 Paired watershed 1 control / 1 treatment Above/below Watershed outlet station

PROJECT	SAMPLING SCHEME	PRIMARY WATER QUALITY VARIABLES
Pennsylvania: Stroud Preserve Watershed	 Grab samples 2x/month Storm events 8x/year Overland flow 4x/yr Groundwater quarterly 	SS, dissolved N, dissolved P, Dissolved Organic Carbon, Chloride, conductivity
Pennsylvania: Swatara Creek Watershed	 Continuous flow, pH, temperature Storm event sampling 	pH, acidity, alkalinity, DO, SS, TP, TN, NH_3 , NO_2 +NO $_3$, metals, fish, macroinvertebrates
Pennsylvania: Villanova University Stormwater BMPs	 Automated storm event monitoring for infiltration BMPs Automated event monitoring and grab sampling of baseflow for stormwater wetland 	Flow, temperature, turbidity, TSS dissolved P, N, metals, FC
South Dakota: Bad River	 Automated storm event monitoring 24-hr composites during spring snowmelt period (daily to weekly) 	Flow, TSS
Vermont: Lake Champlain Basin Agricultural Watersheds	 Continuous flow measurement Automated flow proportional composite samples (weekly) Grab sampling (2x/week) Annual biomonitoring 	TSS, turbidity, TP, TKN, <i>E. coli</i> , FC, FS, macroinvertebrates, fish
Washington: Totten and Eld Inlet	 Grab sampling: weekly (Nov April), Storm event sampling (6x/yr) 	FC, TSS, turbidity
Wisconsin: Otter Creek	Monitoring season: April - October •Grab sampling ~ weekly •Storm event monitoring •Annual biomonitoring	TP, dissolved P, TKN, NH ₃ , NO ₂ +NO ₃ , TSS, turbidity, FC, fish, macroinvertebrates, habitat

<u>BMPs</u>	MAJOR COOPERATING INSTITUTIONS	PROJECT TIME FRAME
 Three-zone riparian forest buffer 	 Stroud Water Research Center PA Dept. Environ. Protection Chesapeake Bay Program USDA NRCS USDA Forest Service 	1992 - 2007
 Limestone sand dosing Open limestone channels 	USGSPA DEP Bureau of Mining and Reclamation	1998 - 2007
Diversion wells Limestone drains	 Schuykill Co. Cons. Dist. Northern Swatara Creek Watershed Association 	periodic reports
 Bio-infiltration traffic island Porous concrete infiltration 	 Villanova University Urban Stormwater Partnership PA DEP 	2003 - 2010
 Infiltration trench Stormwater wetland 		periodic reports
 Riparian management Rangeland/grazing management 	 SD Dept. of Environment and Natural Resources USDA-NRCS Upper Bad River Task Force East Pennington Conservation District 	1996 - 2006
 Livestock exclusion Bio-engineering streambank stabilization 	Univ. of VT School of Natural Resources AVT Dopt Environ Cons.	1994-2000
	+USDA NRCS +USDA FWS	Final Report 2001
 Pasture/grazing management Stream fencing 	 ◆WA Dept. of Ecology ◆Thurston Co. Env. Health Serv. 	1993 - 2002
 Riparian buffers Animal waste management Runoff management Repair failing on-site wastewater systems 	Thurston Cons. DistrictUSDA NRCS	Final Report 2003
Streambank stabilization	•WI Dept. Natural Resources	1994 - 2003
 Livestock fencing Barnyard runoff management Reduced tillage Nutrient and pesticide management 	 USGS Sheboygan Co. Land Conservation Dept. UW Extension 	Final Report 2005