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Introduction

The purpose of this article is to present and demonstrate the
basic analysis of long-term water quality data for trends. This pub-
lication is targeted toward persons involved in watershed nonpoint
source monitoring and evaluation projects such as those in the Na-
tional Nonpoint Source Monitoring Program (NNPSMP) and the
Mississippi River Basin Initiative, where documentation of water
quality response to the implementation of management measures is
the objective. The relatively simple trend analysis techniques dis-
cussed below are applicable to water quality monitoring data collected
at fixed stations over time. Data collected from multiple monitoring
stations in programs intentionally designed to document response to
treatment (e.g., paired-watershed studies or above/below-before/after
with control) or using probabilistic monitoring designs may need to
apply other techniques not covered in this article.

Trend Analysis

For a series of observations over time – mean annual tempera-
ture, or weekly phosphorus concentrations in a river – it is natural to
ask whether the values are going up, down, or staying the same.
Trend analysis can be applied to all the water quality variables and all
sampling locations in a project, not just the watershed outlet or the
receiving water.

Broadly speaking, trends occur in two ways: a gradual change
over time that is consistent in direction (monotonic1) or an abrupt
shift at a specific point in time (step trend). In watershed monitor-
ing, the questions might be “Are streamflows increasing as
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urbanization increases?” [a monotonic trend] or “Did
nonpoint source nutrient loads decrease after the TMDL was
implemented in 2002?” [a step trend]. When a monitoring
project involves widespread implementation of best manage-
ment practices (BMPs), it is usually desirable to know if water
quality is improving: “Have suspended sediment concentra-
tions gone down as conservation tillage adoption has gradually
increased?” [a monotonic trend] or “Has the stream
macroinvertebrate community improved after cows were ex-
cluded from the stream with fencing in 2005?” [a step trend].
If water quality is improving, it is also important to be able to
state the degree of improvement.

Monontonic trend analysis has advantages and disadvan-
tages for the evaluation of nonpoint source projects, depending
on the specific situation (Table 1). Simple trend analysis may
be the best – or only – approach to documenting response to
treatment in situations where treatment was widespread,
gradual, and inadequately documented, or where water qual-
ity data are collected only at a single watershed outlet station.
For data from a short-term (e.g., 3 years) monitoring project
operated according to a paired-watershed design (Clausen and
Spooner 1993), analysis of covariance (ANCOVA) using data
from the control watershed may be more appropriate than
simple trend analysis to evaluate response to treatment because
it directly accounts for the influences of climate and hydrol-
ogy in a short-term data set. In contrast, for a long data record
from a single watershed outlet station, a simple trend analysis
may be the best approach to evaluate gradual change resulting
from widespread BMP implementation in the watershed in the
absence of data from a control site.

The application of trend analysis to evaluate the effects of
a water quality project depends on the monitoring design. Data
from a watershed project that uses an upstream/downstream
or before/after study design where intensive land treatment oc-
curs over a short period generating an abrupt or step change
may be evaluated for a step trend using a variety of parametric
and nonparametric tests including the two sample t-test, paired
t-test, sign test, analysis of (co)variance, or Kruskal-Wallis
test. In general, these tests are most applicable when the data
can be divided into logical groups.

On the other hand, data from long-term, fixed-station moni-
toring programs where gradual responses such as those due to
incremental BMP implementation or continual urbanization
are of most interest, are more aptly evaluated with monotonic

Trend analysis can answer questions like:
“Are streamflows increasing as urbanization increases?”

or
 “Have nutrient loads decreased since the TMDL was

implemented?”

EDITOR’S NOTE
This issue of NWQEP NOTES focuses upon evaluating

water quality data for steadily increasing or decreasing
trends over a long period of time. Such analyses are useful
for identifying gradual changes that may be due to incre-
mental implementation of BMPs. Because some of an
observed trend may be due to changes in hydrologic or
climatic conditions, it is generally necessary to examine
water quality data trends with adjustment for these changes.
Adjustment for such explanatory variables as season,
streamflow, and precipitation helps isolate water quality
trends that may be due to changes in land management.
For example, pollutant concentration is often directly re-
lated to flow. Flow, in turn, is related strongly to precipitation
in most locations. If precipitation and therefore flow in-
creases or decreases over time, it will be difficult to
determine the effect of land management activities on pol-
lutant concentration without separating out the effect of
precipitation and flow on pollutant concentration.

The parametric and nonparametric statistical trend tests
discussed in this issue are best applicable to long-term water
quality data from a single, fixed station such as those found
at a watershed outlet or on a lake. Long-term data sets
would be necessary to determine if the changes remain
consistent over multiple years.

In order to examine the relationship between long-term
trends and changes in land management, it is necessary to
track on an annual basis quantitative changes in land use
and management over the same time period. Such land
management data can help investigators interpret water
quality trends, but would not allow establishment of cau-
sation using the methods described in this issue.

For watershed monitoring programs with more rigor-
ous designs such as the paired watershed design or above/
below-before/after, the statistical techniques discussed in
this issue can be extended by including the control values
(data from the control watershed or upstream site) as ex-
planatory variables and refining the trend term tested to
include the pre-BMP (or calibration) period.

As always, please feel free to contact me with your
ideas, suggestions, and possible contributions to this news-
letter

Jean Spooner
Editor, NWQEP NOTES
NCSU Water Quality Group
Campus Box 7637, NCSU
Raleigh, NC 27695-7637
Email: notes_editor@ncsu.edu
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trend analyses that correlate the response variable (i.e., pollut-
ant concentration or load) with time or other independent
variables. These types of analyses are useful in situations where
vegetative BMPs like the riparian buffers implemented in the
Stroud Preserve NNPSMP project (Newbold et al. 2009) must
mature, resulting in gradual effects expressed over time. Trend
analysis of data collected in a large receiving waterbody such
as a lake or estuary may be the principal way of evaluating
large, complex watershed programs. The Chesapeake Bay Pro-
gram has conducted trend analyses since the early 1990s to
detect and quantify water quality responses in the Bay to nu-
trient reduction actions to measure progress toward Bay
restoration goals (CBP 2007). While the examples in this ar-
ticle focus on detection of changes in concentration of
individual pollutants with respect to time, these tools can also
be used when evaluating the relationship between variables
such as chlorophyll and nutrients.

Trend analysis needs to account for the variability in water
quality data that can be due to many factors, including:

 Seasonal cycles;

 Diurnal cycles;

 Variations in hydrology and weather;

 Human activities and management;

 Measurement error;

 Natural variability; and

 Actual trends

The task of trend analysis is to characterize and account
for other sources of variation and to identify and quantify the
actual trend in a statistically rigorous way.

It is important to recognize some other limitations of simple
monotonic trend analysis. Trend analysis is more effective with
longer periods of record. Short monitoring periods and small
sample sizes make documentation of trends more difficult. Most
importantly, the statistical methods discussed below can help
identify trends and estimate the rate of change, but will not
provide much insight in attributing a trend to a particular cause.
Interpreting the cause of a trend requires knowledge of hydro-
logic processes, land use, and human activities in the watershed.
Establishing causality requires a different study design.

Finally, in looking for trends in water quality, it is important
to recognize that some increasing or decreasing patterns in
water quality especially over short time periods are not trends.
Many water quality variables exhibit seasonality as a result of
temperature, precipitation, and flow. A snapshot of water qual-
ity data from a few months may suggest an increasing trend,
while examination of an entire year shows this “trend” to be
part of a regular cycle associated with temperature, precipita-
tion, or cultural practices. Autocorrelation – the tendency for
the value of an observation to be similar to the observation
immediately before it – may also be mistaken for a trend over
the short term. Changes in sampling schedules, field methods,
personnel, or laboratory practices may also cause shifts in data
that could be erroneously interpreted as trends. Characteriza-
tion of project data through exploratory data analysis (USEPA
2005) will help recognize and account for such features in a
dataset.

General Considerations

Is a simple monotonic trend analysis appropriate?

The first step in trend analysis is to decide if it is an appro-
priate tool for answering the questions you have about project
data. Effective trend analysis requires a fairly long sequence of
data collected at a fixed location, collected by consistent meth-
ods, with few long gaps. It has been suggested that five years
of monthly data are the minimum for monotonic trend (con-
tinuous rate of change, increasing or decreasing) analysis; for
a step trend (abrupt shift up or down), at least two years of
monthly data before and after treatment are required (Hirsch
1988). These time frames are only guidelines; longer periods of
record and/or more intensive sampling frequency would gen-
erally provide a greater sensitivity to detect smaller changes.
Trend analysis is best suited for a situation where the land treat-
ment program has been successful in implementing BMPs over
an extensive portion of the critical area, implementation occurs
over several years, and water quality change is expected to be
gradual.

The water resource type, project design, type of land treat-
ment, and implementation schedule largely determine the type
of trend to be expected. Most of the trend analysis techniques
discussed in this publication apply to the evaluation of a mono-
tonic trend, the kind of change that might be expected in

Table 1. Advantages and disadvantages of simple monotonic
trend analysis as the principal approach for evaluation of
nonpoint source monitoring projects.

Advantages Disadvantages 
Can be done on data from 
a single monitoring station 

Usually requires long, 
continuous data record 

Does not require calibration 
period 

Difficult to account for 
variability in water quality data 
solely related to changes in 
land treatment or land 
management  

Applicable to large 
receiving waterbodies that 
may be subject to many 
influences 

Not as powerful as other 
watershed monitoring designs 
that have baseline (or pre-BMP 
data) with controls (e.g., 
control watershed or upsteam 
data), especially with small 
sample sizes 

Useful for BMPs that 
develop slowly or situations 
with long lag times 

Provides no insight into 
cause(s) of trend 
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response to gradual, widespread implementation of BMPs. Step
trends may occur in response to an abrupt change in the wa-
tershed, such as the completion of a detention pond or a ban
on winter manure application. To properly evaluate a step trend,
it is critical to have a solid a priori hypothesis concerning when
the step change took place; examination of the data them-
selves to search for the best place to locate a shift is
inappropriate. Although techniques exist for testing for step
trends, in many cases a two-sample test (e.g., t-test of before
vs. after) may be a better choice when an abrupt change at a
specific point in time is expected.

Explore the data first

Before beginning trend analysis, define the question that
needs to be answered and then conduct exploratory data analy-
sis (EDA) on the data set (USEPA 2005). EDA will often give
preliminary indications of trends and set the stage for further
trend analysis. Use EDA to evaluate how well the data satisfy
assumptions of parametric statistical analysis (normal distri-
bution, constant variance, and independence), evaluate the
effectiveness of transformations, and characterize relationships
between variables. EDA can reveal important explanatory vari-
ables (covariates) like flow or precipitation that drive dependent
variables at this point. Some trend analysis techniques can
account for covariates.

Evaluate the data set for significant missing observations,
such as a year-long interruption in the middle of a 7-year pro-
gram. Some techniques are sensitive to gaps in data collection.
If a long gap exists in the data, step trend procedures (e.g., as-
sessing the difference in sample means between the two periods
using a two-sample t-test) may be more appropriate than the
monotonic trend analysis techniques discussed below. Although
there is no specific decision rule, Helsel and Hirsch (1992) ad-
vise using step trend rather than monotonic trend analysis if a
data gap is greater than one-third of the total record.

Select variables

Trend analysis can be applied to all the water quality vari-
ables and all sampling locations in the project. In large projects
tracking many variables at many stations, this can be a daunt-
ing task. If full analysis is not feasible, there are several options.
First, a subset of monitored variables can be selected, focusing
on those expected to be most responsive to land treatment or
those that directly relate to water quality impairment. Alterna-
tively, it may be possible to use an index that combines
information from a number of variables, such as the Index of
Biotic Integrity (IBI) for stream fish communities (Karr 1981),
or the Oregon Water Quality Index (OWQI) that integrates
measurements of temperature, dissolved oxygen, BOD, pH,
ammonia+nitrate nitrogen, total phosphate, total solids, and fe-
cal coliform (Cude 2005). Third, overall water quality trends
have been efficiently assessed and presented by conducting trend
analysis on principal components as surrogate variables for
individual water quality constituents (Ye and Zou 1993).

Flow adjustment is a common technique to prepare for
trend analysis. Removing this source of variance from the

data makes subsequent trend tests more powerful and
prevents the identification of a trend in concentration

when it is the result of correlation with flow.

Data reduction and flow adjustment.

Before proceeding to trend analysis tests, it may be neces-
sary or beneficial to perform some preliminary data reduction.
Transformations may be necessary to satisfy assumptions for
parametric analysis. If sampling has been collected regularly
at very frequent intervals, the data can be aggregated to stan-
dard periods (e.g., from daily observations to monthly means
or medians). Adjusting data because of changing sampling fre-
quency (e.g., weekly in years 1-5, monthly in years 6-10)
requires subsampling from the higher frequency data to create
data of the same frequency as the lower frequency to preserve
constant variance. For example, do not compute monthly aver-
ages from weekly data in the early part of the record to combine
with monthly data collected in the more recent part of the record.
Rather, randomly choose one sample per month from the weekly
data to construct a consistent data record of monthly samples.
On the other hand, aggregating data, by computing monthly
means or medians from weekly data throughout the period of
record will reduce autocorrelation.

The flow-weighted or time-weighted mean concentrations
are common methods to aggregate data collected with high fre-
quency (Richards and Baker 1993). Flow-weighted mean
concentration (FWMC) can be defined as:

where c
i 
is the concentration of the ith sample, q

i
 is the instan-

taneous flow associated with the ith sample, and t
i
 is the time

associated with the ith sample. In other words, the FWMC is
calculated by dividing the total pollutant load by the total flow
volume over a given time period. The FWMC can be thought
of as pollutant load normalized for flow or a flow-propor-
tional concentration.

The time-weighted mean concentration (TWMC) can be
defined as:

In a fixed-frequency sampling program, the TWMC would
be identical to the arithmetic mean of the observed concen-
trations.

Because much of the variance in nonpoint source pollutant
concentrations may result from variation in streamflow, flow
adjustment is a common technique to prepare for trend analy-


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sis. Removing this source of variance from the data makes
subsequent trend tests more powerful and prevents the identi-
fication of a trend in concentration when it is the result of
correlation with flow. When flow effects are removed from a
record of concentrations, the test performed becomes a test
for a time trend in the flow-adjusted concentrations versus
time.

A regression of concentration against some function of
discharge is computed and the residuals (the differences be-
tween observed concentrations and concentrations predicted
from the regression, i.e., flow-adjusted concentrations) are
then tested for trend. Examples of this analysis are found in
Hirsch et al. (1991) and Helsel and Hirsch (1992). This tech-
nique requires that a relationship exists between concentration
and discharge. For this procedure to be valid, the streamflow
distribution must be stationary, i.e., be itself free of trend. If
the distribution of streamflow has changed over the period of
record (e.g., because of diversions, detention ponds, or
stormwater BMPs), then residuals analysis or any other flow-
adjustment technique should not be used. Presence or absence
of trend in flow can be verified through knowledge of changes
in watershed hydrology or by independent analysis of trends
in the streamflow record itself. Where streamflows are not
stationary, it may be possible to remove the effects of varying
hydrologic conditions on the concentration variable by using
some appropriate measure of basin precipitation as a covariate
or account for hydrologic changes by other trend analysis
techniques.

Alternatively, because land treatment effects are generally
expected to change the relationship between concentrations and
flow, an analysis of covariance will usually be appropriate.

Graphing

Before proceeding to intensive numerical analysis, it is useful
to re-examine the time series plots developed earlier in the
process of exploratory data analysis. Visual inspection of a time
series plot is the easiest way to look for a trend, but data vari-
ability may obscure a trend. Visualization of trends in noisy
data can be clarified by various data smoothing techniques. Plot-
ting moving averages or medians, for example, instead of raw
data points, reduces apparent variation and may reveal general
tendencies. Spreadsheets like Excel can display a moving-av-
erage trend line in time-series scatterplots with adjustable
averaging periods. A more complex smoothing algorithm, such
as LOWESS (LOcally WEighted Scatterplot Smoothing), can
reveal patterns in very large datasets that would be difficult to
resolve by eye. LOWESS is computationally intensive (see
Helsel and Hirsch 1992), but computer programs exist that make
the procedure relatively easy to accomplish.

Note, however, that visualization has limitations because
people tend to focus on outliers, strong seasonal variation can
mask trends in a variable of interest, and gradual trends are
difficult to detect by eye alone. Additionally, simple visualiza-

tion cannot adequately quantify the magnitude of a trend. Vi-
sualization is not a substitute for the hypothesis testing discussed
below.

Monotonic Trend Analysis

A number of statistical tests are available to identify and
quantify monotonic trends in a way that is defensible and re-
peatable. Statistical trend analysis is a hypothesis-testing
process. The null hypothesis (H

O
) is that there is no trend;

each test has its own parameters for accepting or rejecting
H

O
. Failure to reject H

O
 does not prove that there is not a

trend, but indicates that the evidence is not sufficient to con-
clude with a specified level of confidence that a trend exists.

Table 2 lists some trend tests available for different cir-
cumstances, including adjustments for a covariate and the
presence of seasonality. The tests are further divided into para-
metric, nonparametric, and mixed types. Parametric tests are
considered more powerful and/or sensitive to detect signifi-
cant trends than are nonparametric tests, especially with a
small sample number. However, unless the assumption of nor-
mal distribution for parametric statistics is met, it is generally
advisable to use a nonparametric test (Lettenmaier 1976, Hirsch
et al. 1991, Thas et al. 1998). Both parametric and nonpara-
metric tests require constant variance and independence.

Table 2. Classification of tests for trend (adapted from Helsel
and Hirsch 1992). 

 
Type of 

test 

Not Adjusted 
for covariate 

(X) 

Adjusted for 
covariate (X) 

No 
seasonality 

Parametric 
Linear 
regression of Y 
on t 

Multiple linear 
regression of 
Y on X and t 

Mixed - 

Mann-Kendall 
on residuals 
from 
regression of 
Y on X 

Non-
parametric 

Mann-Kendall 

Mann-Kendall 
on residuals 
from LOWESS 
of Y on X 

Seasonality 

Parametric 

Linear 
regression of Y 
on t and 
periodic 
functions 

Multiple linear 
regression of 
Y on X, t, and 
periodic 
functions 

Mixed 
Regression of 
deseasonalized 
Y on t 

Seasonal 
Kendall on 
residuals from 
regression of 
Y on X 

Non-
parametric 

Seasonal 
Kendall on Y 

Seasonal 
Kendall on 
residuals from 
LOWESS of Y 
on X 

Y = dependent variable of interest; X = covariate, t = time 
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Methods for testing assumptions of distribution, constant vari-
ance, and independence required for parametric linear
regressions are discussed in detail in USEPA (1997a). Non-
parametric tests provide higher statistical power in case of
nonnormality and are robust against outliers and large data
gaps.

These tests will be discussed below, with emphasis on
linear regression, Mann-Kendall, and seasonal Kendall proce-
dures. For more detailed information, consult the references
listed at the end of this article.

TTTTTests without covariates (Y versus time)ests without covariates (Y versus time)ests without covariates (Y versus time)ests without covariates (Y versus time)ests without covariates (Y versus time)

Parametric test: Linear regression of Y on t (Example 1, p. 11).

If project data satisfy all the assumptions necessary for
linear regression (Y is linearly related to t, residuals are nor-
mally distributed, residuals are independent, and variance of
residuals is constant), a simple linear regression of Y on time
is a test for linear trend:

Y = β
0
 + β

1
 X + ε

The null hypothesis is that the slope coefficient β1 = 0. The
t-statistic on β

1
 is tested to determine if it is significantly differ-

ent from zero. If the slope is nonzero, the null hypothesis is
rejected and it can be concluded that there is a linear trend in Y
over time, with rate equal to β

1
. Missing values are allowed. In

some cases, it might have been necessary to log transform the
data to satisfy the above regression assumptions. In this case,
the trend slope will be expressed in log units. A linear trend in
log units is an exponential trend in original units. This can be
expressed in percent per year to make the trend easier to inter-
pret. If β

1
 is the estimated slope of the linear trend in log

10
 units,

then the percentage change over any given year is (10β1 –1)*100.
When there is no trend, the slope is zero, and the equation re-
sults in zero percent change (i.e., β

1
 = 0).

Nonparametric test: Mann-Kendall (Example 2, p.11).

If the data do not conform to a normal distribution, the
Mann-Kendall test can be applied. This test evaluates whether
y values tend to increase or decrease over time through what
is essentially a nonparametric form of monontonic trend re-
gression analysis. The Mann-Kendall test analyzes the sign of
the difference between later-measured data and earlier-mea-
sured data. Each later-measured value is compared to all values
measured earlier, resulting in a total of n(n-1)/2 possible pairs
of data, where n is the total number of observations. Missing
values are allowed and the data do not need to conform to any
particular distribution. The Mann-Kendall test assumes that a
value can always be declared less than, greater than, or equal
to another value; that data are independent; and that the distri-
bution of data remain constant in either the original units or
transformed units (Helsel and Hirsch 1992). Because the Mann-
Kendall test statistics are invariant to transformations such as

logs (i.e., the test statistics will be the same value for both raw
and log-transformed data), the Mann-Kendall test is applicable
in many situations.

To perform a Mann-Kendall test, compute the difference
between the later-measured value and all earlier-measured val-
ues, (y

j
-y

i
), where j>i, and assign the integer value of 1, 0, or

–1 to positive differences, no differences, and negative differ-
ences, respectively. The test statistic, S, is then computed as
the sum of the integers:

Where sign (y
j
-y

i
), is equal to +1, 0, or –1 as indicated above.

When S is a large positive number, later-measured values
tend to be larger than earlier values and an upward trend is
indicated. When S is a large negative number, later values tend
to be smaller than earlier values and a downward trend is indi-
cated. When the absolute value of S is small, no trend is
indicated. The test statistic t can be computed as:

which has a range of –1 to +1 and is analogous to the correla-
tion coefficient in regression analysis. The null hypothesis of
no trend is rejected when S and t are significantly different from
zero. If a significant trend is found, the rate of change can be
calculated using the Sen slope estimator (Helsel and Hirsch
1992):

for all i < j and i = 1, 2, …., n-1 and j = 2,3,….n; in other
words, computing the slope for all pairs of data that were used
to compute S. The median of those slopes is the Sen slope esti-
mator.

TTTTTests accounting for covariatesests accounting for covariatesests accounting for covariatesests accounting for covariatesests accounting for covariates

Variables other than time usually influence the behavior of
water quality variables. These covariates are usually natural
phenomena such as precipitation, temperature, or streamflow.
By removing the variation caused by these explanatory vari-
ables, the noise may be reduced and a trend revealed. Correction
for hydrologic and meteorologic variability is essential in both
parametric and nonparametric trend tests to determine if the
statistically significant trends are due to processes and trans-
port changes such as land use changes, or to artifacts of system
variability.

 

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Selection of an appropriate covariate is critical. It should
be a measure of the driving force behind the behavior of the
variable of interest, but must not be subject to human manipu-
lation during the course of the project, i.e., must not be changed
by BMPs or the land treatment program. In nonpoint source
monitoring, much of the variance in concentration data is usu-
ally a function of runoff and streamflow; thus, natural
streamflow is a commonly used covariate in trend analysis.
However, streamflow should not be used as a covariate if the
land treatment program itself affects streamflow, such as with
urban stormwater infiltration practices or conservation tillage.
In such cases, precipitation may be a good choice for a
covariate.

In deciding whether or not to remove the variation caused
by flow from a data set, consider project objectives and the
nature of the land treatment program. If a land treatment pro-
gram has caused a measurable change in the watershed flow
regime, such a change may in fact be a desired outcome and the
resulting trend in both flow and pollutant concentration may be
important to detect and quantify. Removing variation caused by
flow may risk reducing the magnitude of any trend in concen-
tration alone below detection level, considering other noise in
the system. On the other hand, failure to account for a trend in
flow that is not associated with the land treatment program may
result in showing a trend in concentration where none exists. It
is generally advisable to test the covariate data set indepen-
dently for trend before proceeding.

Parametric: Multiple linear regression of Y on X and t

Multiple linear regression can be used to account for the
effects of other variables such as flow, land management, or
other water quality characteristics on a response variable. Mul-
tiple regression includes covariates in trend analysis in a single
step. Appropriate covariates are those that are correlated with
the water quality variable Y and adjust for changes in climate
to better isolate trends due to BMPs. Consider multiple regres-
sion of concentration (Y) versus time (t) and flow (Q):

Y = β
0
 + β

1
 t + β

2
 Q + ε

The test accounts for the effects of the covariate by includ-
ing them in the regression model. The null hypothesis for the
trend test is β

1
 = 0; the t-statistic for β

1
 tests for trend. If the

coefficient β
2
 for the covariate is not significantly different from

zero, the effect of the covariate is not significant and a simple
regression model of Y on t should be used. An exception to this
would be the case where flow is increasing over time and the
effects of increasing flow are already accounted for in the time
component; in such a case, flow might still be logically included
in the regression model even if β

2
 is not different from zero. It

should be emphasized that as for simple linear regression, the
assumptions that Y is linearly related to t and Q, that residuals
are normally distributed and independent, and that variance of
residuals is constant must be satisfied to use this test properly.

Mixed: Mann-Kendall on residuals from regression of Y on X

This is a hybrid test that includes removal of covariate
effects by a parametric procedure, followed by a nonpara-
metric test for trend. If a reasonable linear regression can be
obtained (i.e., residuals have no extreme outliers, Y is approxi-
mately linear with X), the regression between Y and one or
more Xs (i.e., Y = β

0
 + β

1
 X + ε) can remove the effect of X

prior to performing the Mann-Kendall test for trend.

The residuals (R) from the regression model are computed
as observed minus predicted values:

R = Y - (β
0
 + β

1
 X)

Then the Kendall S statistic is computed on the R-time data
pairs and tested to see if it differs significantly from zero. If
assumptions for parametric statistics are seriously violated, a
fully nonparametric alternative (e.g., using LOWESS) should
be selected to estimate the relationship between Y and X as
described in the next section.

Nonparametric: Mann-Kendall on residuals from LOWESS
of Y on X

The LOWESS smoothing technique describes the relation-
ship between Y and a covariate X without assuming linearity or
normality of residuals. Applying LOWESS smoothing to a
scatterplot of X and Y is roughly analogous to regression, with-
out forcing a straight line. Given the LOWESS fitted value Y’,
the residuals (R) are computed as:

R = Y – Y’

Then, the Kendall S statistic is computed on the R-t data
pairs and tested to see if it differs significantly from zero.

If the distribution of the data is unknown or known to
violate parametric assumptions, this procedure should be used
instead of the parametric or mixed tests.

SeasonalitySeasonalitySeasonalitySeasonalitySeasonality

Frequently, changes be-
tween seasons are a major
source of variation in water
quality data because land
management and use change
with the seasons. Most con-
centrations in surface waters
show strong seasonal pat-
terns. Seasonal variation in streamflow is an important
component of this seasonality, but biological processes (e.g.,
enhanced survival of fecal microorganisms in colder water
temperatures, release of nitrogen through decomposition) and
management activities (e.g., fertilizer applications, tillage) of-
ten contribute to seasonal variation. Thus, some techniques

Water quality data often
show seasonal patterns

that require trend analysis
techniques that go beyond
simply controlling for the

effects of flow.
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description of seasonality (seasonal medians), it has generally
low statistical power.

Nonparametric: Seasonal Kendall on Y (Example 3, p. 12)

The seasonal Kendall test statistic is computed by perform-
ing a Mann-Kendall calculation for each season, then combining
the results for each season. For monthly seasons, January ob-
servations are compared only to other January observations,
etc. No comparisons are made across seasonal boundaries. The
Seasonal Kendall test is highly robust and relatively powerful,
and is often the recommended method for most water quality
trend monitoring.

The S
k
 statistic is computed as the sum of the S from each

season:

where S
i 
 is the S from the ith season and m is the number of

seasons.

The seasonal statistics are summed and a Z statistic is com-
puted; consult other sources for the method of calculating Z

Sk
(e.g., Helsel and Hirsch 1992, USEPA 1997b). If the number of
seasons and years are sufficiently large (seasons * years > 25),
the Z value may be compared to standard normal tables to test
for a statistically significant trend. For fewer seasons/years, the
applicability of standard normal tables has not been evaluated.
An estimate of the trend slope for Y over time can be computed
as the median of all slopes between data pairs within the same
season using a generalized version of the Sen slope estimator
described above. Consult other sources for the method of cal-
culation (e.g., Helsel and Hirsch 1992, USEPA 1997b).

Emerging trend analysis techniquesEmerging trend analysis techniquesEmerging trend analysis techniquesEmerging trend analysis techniquesEmerging trend analysis techniques

A recent paper by Hirsch et al. (2010) called for a “next
generation” of trend analysis techniques in response to the ob-
servations that new and longer monitoring data sets exist, new
questions about the effectiveness of control efforts, and the avail-
ability of new statistical tools. The authors identified seven
critical attributes for the next generation of trend analysis:

 Focuses on revealing the nature and magnitude of change,
rather than strict hypothesis testing;

 Does not assume that the flow-concentration relationship
is constant over time;

 Makes no assumptions that seasonal patterns repeat exactly
over the period of record, but allow the shape of seasonality
to evolve over time;

 Allows the shape of an estimated trend to be driven by the
data and not constrained to follow a specific form such as
linear or quadratic; trend patterns should be allowed to
differ for different seasons or flow conditions;

 Provides consistent results describing trends in both
concentration and load;

beyond controlling for the effects of a flow covariate are of-
ten necessary for water quality trend analysis.

Some trend analysis techniques require you to define a
“season” in advance. Examination of box plots of data by sea-
son or other graphical displays may help identify reasonable
divisions. In general, seasons should be just long enough so
that some data are available for most of the seasons in most
years of monitoring. If data are collected or aggregated on a
monthly frequency, for example, seasons should be defined
representing each of the 12 months. If data are considered in
quarterly blocks, there should be four seasons. In agricultural
settings, it may make sense to consider either two or four
“seasons”: cropping and non-cropping, or non-cropping, seed
preparation, cropping and harvest.

Parametric: Linear regression of Y on X, t, and periodic func-
tions

Periodic functions like sine and cosine can be used to de-
scribe cyclic seasonal variations in a multiple regression model,
with or without covariates. For an annual cycle:

Y
t
 = β

0
 + β

1
sin (t2π/n) + β

2
 cos(t2π/n) + β

3
t + other terms + ετ

Where: t=1,2,3...N  (N=total number of samples)

n = number of samples per year (e.g., 12 for monthly data,

      52 for weekly data)

note: a “DATE” variable can be used instead of ‘t’ with

       n=365.25 since ‘DATE’ is a daily value.

Where “other terms” are covariates such as flow, precipita-
tion, or other influences. The trend test is conducted by
determining if the slope coefficient on t (β

3
) differs signifi-

cantly from zero. This test assumes that the sine and cosine
terms realistically simulate annual seasonal cycles. Of course,
the usual assumptions of parametric regression must be met.
If variability introduced by strong seasonality (e.g., extremely
dry or wet season) is high enough to cause violation of para-
metric assumptions, it may become necessary to break out
data by season before conducting trend analysis.

Mixed: Seasonal Kendall on residuals from regression of Y on
X and Regression of deseasonalized Y on t

Two hybrid procedures may be used to account for sea-
sonality. First, the seasonal Kendall test can be applied to
residuals from a simple linear regression of Y versus X. This
approach should only be used when the relationship of Y and
X complies with the appropriate assumptions for parametric
statistics.

Second, the data can be “deseasonalized” by subtracting
seasonal medians or some other measure of seasonal effect from
all the data within the season. The deseasonalized data is then
regressed against time (Montgomery and Reckhow 1984). Al-
though this technique has the advantage of producing a





m

i
ik S

1
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 Provides not only estimates of trends in
concentration and flux but also trend
estimates where the variation in water
quality due to variation in streamflow
has been statistically removed; and

 Includes diagnostic tools to assist in
understanding the nature of the changes
that have taken place over time, e.g., to
identify particular times of year or
hydrologic conditions during which
water quality changes are most
pronounced.

The authors propose and demonstrate an
experimental trend analysis technique called
Weighted Regressions on Time, Discharge,
and Season (WRTDS) that addresses these
critical attributes. While a presentation of this
approach is beyond the scope of this article,
the reader is referred to the original paper for additional infor-
mation.

Step Trends

Monotonic trend analysis may not be appropriate for all
situations. Other statistical tests for discrete changes (step
trends) should be applied where a known discrete event (like
BMP implementation over a short period) has occurred. Test-
ing for differences between the “before” and “after” conditions
is done using two-sample procedures such as t-tests and analy-
sis of covariance (parametric techniques) and nonparametric
alternatives such as the rank-sum test, Mann-Whitney test,
and the Hodges-Lehmann estimator of step-trend magnitude
(Helsel and Hirsch 1992, Walker 1994).

Monitoring Program Design and Trend Analysis

Trend analysis is effective with data sampled continuously
at fixed-time intervals. If you are presently designing your
watershed monitoring program, here are key points to con-
sider if you plan to use trend analysis to evaluate your project:

 Use consistent sampling locations throughout the
monitoring period;

 Operate the monitoring program continuously, starting
before implementation and continuing after
implementation;

 Use consistent field and laboratory procedures;

 Collect data on important covariates to help explain
variations in water quality; and

 Monitor land treatment, land use, and other nonpoint
source-related activities in your watershed to provide
information to help you interpret observed trends.

Statistical tools for trend analysis

Trend tests, especially nonparametric tests like the Mann-
Kendall and seasonal Kendall are computationally intensive and
are impractical to apply manually in most cases. Unfortunately,
statistical software packages that calculate Mann-Kendall and
other nonparametric analyses are less common than those that
perform parametric tests. The table above lists some examples
of software that will run some or all of the nonparametric tests
discussed in this publication and web sites to visit for more
information. Practical Stats (see Further Reading and Re-
sources, below) provides a useful review of the capabilities of
low-cost statistical software at http://www.practicalstats.com/
aes/aes/DownloadsAES_files/Evaluation2.pdf.

Stand-alone Windows programs for running Mann-Kendall
and Seasonal Kendall tests have been published by USGS and
are available for free download at http://pubs.usgs.gov/sir/2005/
5275/. An example of a custom-made spreadsheet calculator
for running Mann-Kendall tests on quarterly data can be found
at http://www.in.gov/idem/4213.htm (Indiana Department of
Environmental Management 2011).
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Trend analysis example 1: Simple linear
regression

 Eight years of monthly total phosphorus concentration
data from Samsonville Brook, a stream draining a Vermont
agricultural watershed

 Data satisfy assumptions for regression after log
transformation:

 Normal distribution
 Constant variance
 Independence (low autocorrelation)

Simple linear regression (using Excel or any basic statistical
package):

Log [TP] = -0.8285 – 0.00414(Time)

r2 = 0.18 F = 21.268  P < 0.001

Rate of change:

Slope of log-transformed data = -0.00414

    (10-0.00414 – 1)*100 = -0.95%/month or ~11%/yr

 This result suggests that total P concentrations have de-
creased significantly over the period at a rate of approximately
11% a year.

Trend analysis example 2: Mann-Kendall

 Eight years of quarterly mean
total phosphorus concentration
data from Samsonville Brook, a
stream draining a Vermont
agricultural watershed

 Data satisfy assumptions for
constant variance and
independence, but are not
normally-distributed without
transformation

The Mann-Kendall trend test for
this example may be evaluated in two
ways. First, in a manual calculation,
use the formulas below. The value of
S (sum of the signs of differences
between all combinations of obser-
vations) can be determined either
manually or by using a spreadsheet
to compare combinations, create
dummy variables (-1, 0, and +1), and
sum for S.
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1 0.180 
5 0.200 
9 0.250 

13 0.068 
17 0.201 
21 0.063 
25 0.099 
29 0.125 
33 0.205 
37 0.078 
41 0.216 
45 0.059 
49 0.098 
53 0.102 
57 0.137 
61 0.037 
65 0.100 
69 0.051 
73 0.180 
77 0.060 
81 0.095 
85 0.021 
89 0.120 
93 0.063 
97 0.035 
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(Example 2, Con’t)

This Z statistic is significant at P = 0.014, indicating a sig-
nificant trend, i.e., we are 98.6% confident there is a decreasing
trend in TP. See USEPA (1997b) for the calculation of  σswhen
there are ties among the data.

To estimate the of change, use the Sen slope estimator:

 211 individual slopes -0.00945 to
+0.00766

median slope = -0.0011 mg/L/month
= -0.013 mg/L/yr

This result suggests that total P concentration decreased
significantly over the period at a rate of about 0.013 mg/L/yr.

Alternatively, use a statistics computer program to run the
Mann-Kendall procedure. For example, using the USGS pro-
gram for the Kendall family of tests (Helsel et al. 2005), set up
a text data input file specifying the Mann-Kendall test (test #4)
without flow adjustment (“0”) or seasons (blanks) and name
the data input file (“MKexample2.txt”) as:

4 0    MKexample 2
0 .180
5 0.200
9 0.250
.
.
97 0.035

The output from the program gives the same results as
shown above, including the estimated slope of the trend (-
0.0011) computed by the Sen slope estimator above:

Trend analysis example 3: Seasonal Kendall

 Six years of weekly E. coli data from a stream draining
Godin Brook, a Vermont agricultural watershed

 Data satisfy assumptions for constant variance and
independence, but are not normally-distributed without
transformation

 Data display high degree of seasonality to the eye (low E.
coli counts in winter , high counts in summer) due to
influence of water temperature on bacteria survival and to
grazing season

Raw data plotted (example 3):

Data aggregated to monthly median values:

Monthly median data plotted still show a strong seasonal
cycle:

 Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May 

1994 3750 7725 16350 4600 565 535 74      

1995 4400 5900 3300 2663 1530 345 69 29 12 31 8 688 

1996 6788 2125 14500 11450 2900 190 43 72 20 69 50 185 

1997 4825 13250 3635 592 4100 116 20 33.5 19 20 18 262 

1998 2025 1200 3083 5825 1563 78 23 14 11 63 16 807.5 

1999 378 265 109 1000 2360 653 37 21 8.5 19 6 161 

2000        106 4.5 24 42 1432 

(va lues represent  E. coli/100 ml) 

 

     Kendall’s tau Correlation Test
US Geological Survey, 2005

 Data set:        MK Example 2

 The tau correlation coefficient is -0.353
     S =   -106.
     z =  -2.454
     p =  0.0141

 The relation may be described by the equation:

    Y = 0.15412     +  -0.1125E-02 * X
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(Example 3, Con’t)

As in Example 2, the Seasonal Kendall trend test may be
computed manually, using the formulas below , either by hand
or using a spreadsheet:

The Mann-Kendall statistic (Si) is calculated for each month;
the seasonal Kendall statistic Sk calculated as sum of monthly Si:

This Z statistic is significant at P  = 0.011, indicating a sig-
nificant decreasing trend.

To use the Sen slope estimator, calculate slopes between all
possible pairs within each season, rank all slope estimates, and
find the median:

180 individual slopes -13,050 to
 +11,200

median slope = -5.8 E. coli/100 ml/
yr

This result suggests that E. coli counts have decreased sig-
nificantly over the period at an approximate rate of 6 E. coli/100
ml/yr.

Alternatively, use a statistics computer program to run the
Seasonal Kendall procedure. For example, using the USGS pro-
gram for the Kendall family of tests (Helsel et al. 2005), set up
a text data input file specifying the Seasonal Kendall test with
data as year, season, and value (test #2) without flow adjust-
ment (“0”), seasons (ignored for this type of input data) and
name the data input file (SKexample3.txt) as:

2 0 SK Example 3
1994 6 3750
1994 7 7725
1994 8 16350
.
.
.
2000 3 24
2000 4 42
2000 5 1432

The output from the program gives the same results as shown
above, including the estimated slope of the trend (-5.75) com-
puted by the Sen slope estimator above:

Note: data used in these three examples are taken from the Vermont
NMP Project, Lake Champlain Basin Agricultural Watersheds Section
319 National Monitoring Program Project, 1993 – 2001 (Meals 2001).



CONFERENCE REPORT
The 19th Annual National Section 319 Nonpoint Source

Monitoring Program (NNPSMP) Workshop was held on
September 25-28, 2011 in Philadelphia, PA.

This symposium integrated the 19th National 319 Non Point
Source Monitoring Workshop, 2011 Pennsylvania Stormwater
Management Symposium and the 5th International Low Im-
pact Development Conference. The conference showcased
approximately 250 platform presentations, 70 professional
posters, several specialized talks, panels, LID short courses,
vendor booths and tours. Attendance was 722 participants.
The symposium was a joint effort of Villanova University, NC
State University and the University of Maryland along with 13
cooperators. The PowerPoint presentations will be accessible
from http://www.bae.ncsu.edu/stormwater/2011lid/.

  

Seasonal Kendall Test for Trend 
US Geological Survey, 2005 
 
Data set:   SK Example 3 
 
The record is 7 complete water years with  12 seasons per year 
beginning in water year 1994. 
 
The tau correlation coefficient is -0.267 

S =    -48. 
z =  -2.549 
p =  0.0108 
p =  0.2003 adjusted for correlation among seasons 

(such as serial dependence) 
The adjusted p-value should be used only for data with 
more than 10 annual values per season. 
 
The estimated trend may be described by the equation: 
 

Y =   246.1     +   -5.750     * Time 
 
where Time = Year (as a decimal) - 1993.75 (beginning of 

first water year) 
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INFORMATION

Aquatic Life Declines at Early
Stages of Urban Development

The number of native fish and aquatic insects, especially
those that are pollution sensitive, declines in urban and subur-
ban streams at low levels of development — levels often
considered protective for stream communities, according to a
study by the U.S. Geological Survey.

“When the area of driveways, parking lots, streets and other
impervious cover reaches 10 percent of a watershed area, many
types of pollution sensitive aquatic insects decline by as much
as one third, compared to streams in undeveloped forested
watersheds,” said Tom Cuffney, USGS biologist. “We learned
that there is no ‘safezone,’ meaning that even minimal or early
stages of development can negatively affect aquatic life in ur-
ban streams.”

The full report and extended video podcasts are available
at the National Water Quality Assessment program urban studies
website: http://water.usgs.gov/nawqa/urban/

Free LID/BMP Tool for
Stormwater Managers

The Water Environment Research Foundation has released
their BMP SELECT tool available at: http://www.werf.org/se-
lect. A wide array of different BMPs and LID practices are
available for application on a developing watershed or for ret-
rofit in developed areas. BMP choices are often based principally
on minimizing the capital cost of installation of the BMPs.

SELECT is an Excel-based planning level tool that enables
a stormwater manager to examine the effectiveness of alterna-
tive scenarios for controlling stormwater pollution and the whole
life cost associated with each scenario. Thus, the manager can
make more informed decisions on which practices to permit with
some confidence that they will meet imposed TMDL limits and
also can have some confidence that the capital and O&M costs
involved in implementing BMPs are known.

SELECT uses a long-term record of hourly rainfall to drive
the model; this hourly rainfall is translated into runoff using a
runoff coefficient that is related to the effective imperviousness
of the catchment. This runoff is introduced to the BMP. If there
is capacity in the BMP, the runoff is captured; if the BMP is
full, the runoff is discharged untreated to the receiving wa-
ters. The model calculates total outflow as the sum of what is
treated and what is not.

SELECT output data includes annual pollutant loads dis-
charged to the receiving water, pollutant load frequency curves
with uncertainty estimates, and an estimate of the whole life
cost of the BMPs applied in the watershed.

BMPs that can be simulated in SELECT include:

 Extended detention

 Bioretention

 Wetlands

 Swales

 Permeable pavement

 Filters

Water quality parameters that can be simulated include:

 TSS

 Total nitrogen

 Total phosphorus

 Total zinc

As time and funds permit, additional BMP and LID prac-
tices will be added to the model. If you would like to help
expand the current set of BMPs or water quality parameters in
the model, please contact Jeff Moeller at jmoeller@werf.org.
Coming soon: SELECT will be made available to the public in
an open code format to allow the user community to make
modifications and enhancements to the tool. WERF will es-
tablish a process to incorporate approved user community
developed enhancements so that all may benefit. The latest
information and updates on the tool will be posted at http://
www.werf.org/select.

U.S. EPA Releases Updated Strategy
on Green Infrastructure

On April 29, 2011 Deputy Administrator Perciasepe an-
nounced the release of EPA’s new Strategic Agenda to Protect
Waters and Build More Livable Communities through Green
Infrastructure (http://www.epa.gov/npdes/pubs/gi_agenda_
protectwaters.pdf) (5 pp, 349K), which outlines the activities
that the Agency will undertake to help communities implement
green infrastructure approaches. EPA’s strategy focuses on
clarifying how green infrastructure can and should be used
within the regulatory and enforcement contexts, outreach and
information exchange, financing, and tool development and
capacity building. Deputy Administrator Perciasepe also an-
nounced EPA’s green infrastructure community partnership
effort by introducing the first 10 communities (http://
www.epa.gov/npdes/pubs/gi_partner_organizations.pdf ) (1
pp, 131K) that will work with the Agency on green infrastruc-
ture implementation issues. The cities include: Austin, TX;
Boston, MA; Cleveland, OH; Denver, CO; Jacksonville, FL;
Kansas City, MO; Los Angeles, CA; Puyallup, WA; Syracuse,

http://www.werf.org/select
http://www.werf.org/select
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NY, and Washington DC and neighboring Anacostia Water-
shed communities. Concurrent with the release of the Strategic
Agenda, EPA’s Office of Water and Office of Enforcement
and Compliance Assurance issued a joint memorandum (http:/
/ w w w . e p a . g o v / n p d e s / p u b s / g i _ m e m o _
protectingwaterquality.pdf) (5 pp, 343K) encouraging com-
munities to use green infrastructure to manage wet weather
and meet Clean Water Act Requirements. http://www.epa.gov/
greeninfrastructure

Incorporating Impervious Cover
Into Water Quality Plans

STORMWATER CONTROL | WHAT IS IMPERVIOUS
COVER? A new strategy for developing pollution control goals
for highly urbanized areas.

By:Chester Arnold (Univ Connecticut), Kelly Collins (Cen-
ter for Watershed Protection), Deb Caraco (Center for
Watershed Protection), Anne Kitchell (Horsley Witten Group),
and Lori Lilly (Center for Watershed Protection

Full Article March 2011: http://clear.uconn.edu/projects/
TMDL/library/tmdl/papers/PublicWorks-TMDL-411.pdf

In February 2007, the U.S. EPA entered the next genera-
tion of watershed-based pollution control by issuing a Total
Maximum Daily Load (TMDL) based not on a specific pollut-
ant but on impervious cover. The goals for Connecticut’s
2.4-square mile Eagleville Brook Watershed integrate aspects
of urban development. Since 2007, similar TMDLs have been
or are being developed across the Northeast, including in
Maine, Massachusetts, and North Carolina. In Connecticut,
238 square miles of impervious cover (about 5% of the state)
was added between 1985 and 2006. This work is expected to
become a national model by which communities can use a
framework of impervious cover management to meet water
quality goals. Typically, TMDLs are managed by local juris-
dictions through a waste load allocation established by the state.
In this case, the Connecticut Department of Environmental
Protection (DEP) determined that a biological impairment —
such as low fish densities in some areas and large amounts of
aquatic habitat completely unoccupied in others — existed,
but couldn’t be attributed to one specific pollutant. Instead,
the impairment was attributed to an array of pollutants trans-
ported by stormwater and linked to urbanization, and — more
directly — impervious cover.

Nonpoint Source Outreach Toolbox
Upgrade Released

EPA has released a significant upgrade to its Nonpoint
Source Outreach Toolbox. This new version is available online

at http:www.epa.gov/nps/toolbox/.The search features have
been enhanced and the site has substantial new outreach ma-
terial—TV, radio and print ads on various nonpoint source and
stormwater topics of concern. The search feature is directly
accessible at: http://cfpub.epa.gov/npstbx/index.cfm

 

MEETINGS

Mark Your Calendars
20th Annual Nonpoint Source (NPS) Monitoring Work-
shop. Tulsa, OK. October 14-17, 2012.

Meeting Announcements — 2012

January/February

5th International Perspective on Water Resources & the
Environment (IPWE 2012). Marrakech, Morocco. January
5-8, 2012. http://www.asce.org/events/EventDetail.aspx?id=
12884905950

2012 National Association of Conservation Districts
(NACD) Annual Meeting. Las Vegas, NV. January 29-Febru-
ary 1, 2012. http://www.nacdnet.org/events/annualmeeting/

March

AWWA 2012 Sustainable Water Management Confer-
ence & Exposition. Marriott Portland Waterfront Hotel,
Portland, Oregon. March 18 - 21, 2012.
http://www.awwa.org/Conferences/Sustainable
Management.cfm?ItemNumber=56511&navItemNumber=
56514

AWRA Spring Specialty Conference: GIS & Water Re-
sources VII. Sheraton New Orleans Hotel, New Orleans, LA.
March 26-28, 2012. http://awra.org/meetings/Spring2012/

AridLID 2012 Conference: Green Infrastructure and Low
Impact Development in Arid Environments. Tucson, Ari-
zona. March 27-29, 2012. http://AridLID.org

April/May

2012 Student Water Conference. Oklahoma State Uni-
versity, Stillwater, OK. April 4-5, 2012. Only graduate and
undergraduate students are invited to submit abstracts for oral
and poster. http://agwater.okstate.edu/news-events/student-wa-
ter-research-conference (Abstracts are due by 1/6/2012)

http://www.epa.gov/npdes/pubs/gi_memo_protectingwaterquality.pdf
http://www.epa.gov/npdes/pubs/gi_memo_protectingwaterquality.pdf
http://www.epa.gov/npdes/pubs/gi_memo_protectingwaterquality.pdf
http://www.epa.gov/greeninfrastructure
http://www.epa.gov/greeninfrastructure
http://clear.uconn.edu/projects/TMDL/library/tmdl/papers/PublicWorks-TMDL-411.pdf
http://clear.uconn.edu/projects/TMDL/library/tmdl/papers/PublicWorks-TMDL-411.pdf
http:www.epa.gov/nps/toolbox/
http://www.asce.org/events/EventDetail.aspx?id=12884905950
http://www.asce.org/events/EventDetail.aspx?id=12884905950
http://agwater.okstate.edu/news-events/student-water-research-conference
http://agwater.okstate.edu/news-events/student-water-research-conference
http://www.awwa.org/Conferences/SustainableManagement.cfm?ItemNumber=56511&navItemNumber=56514
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Production of NWQEP NOTES is funded through U.S.
Environmental Protection Agency (USEPA) contract
#EP-C-08-004. Task Order Manager: Paul Thomas,
Water Division, EPA Region 5. 77 W. Jackson St.,
Chicago, IL 60604.

8th National Water Monitoring Conference - Water: One
Resource - Shared Effort - Common Future. Portland, OR.
Apr 30 - May 4, 2012. http://acwi.gov/monitoring/conference/
2012/

New England Interstate Water Pollution Control Com-
mission (NEIWPCC) and the New Hampshire Department
of Environmental Services 23rd Annual Nonpoint Source
Pollution Conference for the New England Region.
Sheraton Harborside Hotel, Portsmouth, NH. May 15-16 , 2012.
Information and previous years’ presentations: http://
www.neiwpcc.org/npsconference. (Abstracts are due by 12/
16/2011.)

2012 Land Grant and Sea Grant National Water Confer-
ence. Marriott Waterfront Hotel, Portland, OR. May 20-24,
2012. http://www.usawaterquality.org/conferences/2012/ (Ab-
stracts are due by 1/2/2012)

June

Society of Wetland Scientists and the Greater Everglades
Ecosystem Restoration Conference with 9th INTECOL In-
ternational Wetlands Conference. Orlando, FL June 3-8,
2012. http://www.conference.ifas.ufl.edu/INTECOL/ (Abstracts
are due by 12/16/2011)

2012 Ohio Stormwater Conference. SeaGate Convention
Center. Toledo, OH. June 7-8, 2012. http://
www.ohioswa.com/calendar-events/annual-conference/

Urban Environmental Pollution 2012: Creating Healthy,
Liveable Cities. Amsterdam, Netherlands. Jun 17-20, 2012.
http://www.uepconference.com/ (Abstracts due 1/16/2012)

July/August

11th International Conference on Precision Agriculture.
Hyatt Regency, Indianapolis, IN. July 15-18, 2012. https://
www.ispag.org/ (Abstracts still being accepted)

WEF Stormwater Symposium 2012. Sheraton Baltimore
City Center, Baltimore, Maryland, July 18 – 20, 2012. http://
www.wef.org/stormwater2012/

67th Annual International Conference for the Soil and
Water Conservation Society (SWCS): Choosing Conser-
vation: Considering Ecology, Economics and Ethics. Ft.
Worth, TX. July 22-25, 2012. http://www.swcs.org/12ac (Ab-
stracts are due by 12/15/11)

2012 American Society of Agricultural & Biological
Engineers (ASABE) Annual International Meeting. Dallas,
TX. July 29-August 1, 2012. http://www.asabemeetings.org/

October

2012 Stream Restoration Conference. Wilmington, NC.
October 15-18, 2012. http://www.bae.ncsu.edu/training_and_
credit/workshops.php

20th Annual Nonpoint Source (NPS) Monitoring Work-
shop. Double Tree Hilton at Warren Place in Tulsa, OK. October
14-17, 2012. http://ncsu.edu/waterquality

November

The 32nd International Symposium of the North Ameri-
can Lake Management Society. Madison, WI. November 7 –
9, 2012. http://www.nalms.org/

2012 Annual Water Resources Conference. Hyatt Re-
gency Jacksonville Riverfront, Jacksonville, FL. Nov. 12-15,
2012. http://awra.org/

December

ACES and Ecosystem Markets 2012. Ft. Lauderdale, FL.
December 10-13, 2012. http://www.conference.ifas.ufl.edu/
aces/ (Abstracts still being accepted)



The NCSU Water Quality Group
publications list and order form can

be downloaded at
http://www.ncsu.edu/waterquality/issues/pub_order.html

http://acwi.gov/monitoring/conference/2012/
http://acwi.gov/monitoring/conference/2012/
http://www.neiwpcc.org/npsconference
http://www.neiwpcc.org/npsconference
http://www.usawaterquality.org/conferences/2012/
http://www.bae.ncsu.edu/training_and_credit/workshops.php
http://www.bae.ncsu.edu/training_and_credit/workshops.php
http://www.conference.ifas.ufl.edu/aces/
http://www.conference.ifas.ufl.edu/aces/
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